EFFECT OF RAW DESEEDED FRUIT POWER OF TRICHOSANTHES DIOICA (ROXB) ON BLOOD SUGAR, SERUM CHOLESTEROL, HIGH DENSITY LIPO-PROTEIN, PHOSPHOLIPID AND TRIGLYCERIDE LEVELS IN THE NORMAL ALBINO RABBITS

Sir,

(Received on December 23, 1987)

Trichosanthes dioica Roxb. (Hindi - 'Pointed gourd' or 'Parval') fruits are used as vegetable. In indigenous system of medicine its use has been considered in the treatment of alopecia, epilepsy, fevers, headache, leprosy, whooping cough, skin diseases and ulcers (1-5). The effect of chronic feeding of deseeded fruit power of T. dioica in the raw form on the blood sugar and serum lipid profile of healthy normal albino rabbits is reported here.

Fresh fruits of T. dioica purchased locally were washed, cut, and seeds were separated; the pulp with skin was air dried, powdered, and stored at room temperature in glass containers (1 g dry powder=15 g fresh weight). Diet for experimental work was prepared by mixing the powder uniformly (1 g/100 g) with Hindustan Gold Mohr (HGM) rabbit feed (Control diet).

Eight normal male healthy albino rabbits (1.2 to 1.8 kg) were maintained on HGM rabbit feed for a month (control period). The animals had free access to food and water, and their daily consumption of food was between 95 to 100 g. Fasting samples of venous blood were collected twice during this period two weeks apart and analysed to check constancy of their levels, this was followed by ad libitum feeding of the experimental diet for eight weeks. The total amount consumed per day was not altered. Fasting blood samples were analysed for sugar (FBS, 6), total serum cholesterol (7), HDL-cholesterol (8), phospholipids (PL, 9) and triglycerides (TG, 10). The data were evaluated statistically by applying Mahlanabis 'd' test.

Analysis of blood samples during the control period and after feeding experimental diet upto 8 weeks revealed that FBS levels, total serum cholesterol and TG levels fell significantly from 1st week; the fall was progressive. On the other hand, HDL-cholesterol and PL levels increased significantly (Table I).

TABLE I: Effects of feeding power of T. dioica fruits (excluding seeds) in diet (1 g/100 g) in raw form on blood sugar, serum cholesterol, HDL-cholesterol, triglycerides (sTG) and phospholipids (sPL) in the normal albino rabits.

OBESTBRUB.	Control	Experimental HOME			
Parameter		Week-ends 1st 3rd 4th 8th			
OT IGUDA OU	College Constitution	Ist	3rd	4th	8th
- 49	77.49	71.34	67.51	65.81	62.09
Blood sugar	± 3.21	± 1.83**	± 2.55	± 2.98**	± 3.08**
		(7.94)	(12.88)	(15.07)	(19.87)
0 11 . 1	89.92	78.81	73.12	70.30	59.64
Serum cholesterol	± 6.11	± 6.48**	± 5.61**	± 5.18**	± 3.88**
The same of the sa	the or Person	(12.36)	(18.68)	(21.82)	(33.67)
UDI LAURENT SELTE	21.57	25.33	27.04	29.29	32.36
HDL-cholesterol	± 3.86	± 4.23**	± 4.21**	± 3.96**	± 3.03**
TOTAL CITY ON THE	T dising in the	(17.43)	(25.36)	(35.79)	(50.02)
mc	189.44	170.60	158.65	149.07	132.40
sTG	± 12.47	± 12.41**	± 8.66**	± 7.53**	± 8.45**
		(9.94)	(16.25)	(21.31)	(30.11)
ceds nero separated.	73.93	77.76	81.69	83.65	88.15
temperature in glass	5.18	5.41*	± 3.96**	± 3.55**	± 3.87**
	r experimental v	(5.18)	(10.50)	(13.15)	(19.23)

n=8 in each group: Values are mean±S. D.

Figures in parentheses indicate percent change.

P values **<0.001, *<0.01.

Raw deseeded fruit powder of *T. dioica* showed potent hypoglycemic, hypocholesterolemic, hypotriglyceridemic and hyperphospholipidemic effects in the normal albino rabbits. In addition to this, the HDL-cholesterol is significantly increased. Since total cholesterol shows decrease and HDL-cholesterol shows an increase, obviously low density and very low density lipoprotein is ought to decreased tremendously.

The observed effect could be of clinical interest from view point of cardiovascular disorders (11-14) and diabetes mellitus (15).

ACKNOWLEDGEMENTS

The authors are grateful to Indian Council of Medical Research, New Delhi for providing financial support.

GOVIND SHARMA AND M. C. PANT

Department of Biochemistry,
S. N. Medical College, Agra - 282 002

REFERENCES

- 1. Basu, B. D. and K. R. Kirtikar. Indian Medicinal Plants (L. M. Basu, Allahabad) Vol. II, p. 1110, 1935.
- 2. Dymock, W., C. J. H. Warden and D. Hooper. Pharmacographia Indica, (Kegan Paul, Trench, Trubner & Co. LD, London) Vol. II, p. 72, 1891.
- 3. Nadkarni, K. M., A. K. Nadkarni and R. N. Chopra. Indian Materia Medica, (Popular Prakashan, Bombay) Vol. I, p. 1236, 1982.
- 4. Watt, G. A Dictionary of the Economic Products of India, (Cosmo Publications, Delhi) Vol. 6 (4): p. 83, 1972.
- 5. Dash, B. and R. Bedi. Indigenous drugs for import substitution. ISI Bulletin, 19: 393, 1967.
- 6. Somogyi, M. A new reagent for the determination of sugars. J. Biol. Chem., 195: 19, 1952.
- 7. Zlatkis, A., B. Zak and G. J. Boyle. A new method for the direct determination of serum cholesterol. J. Lab. Clin. Med., 41: 486, 1953.
- 8. Burstein, M., H. R. Scholnick and R. Morfin. Rapid method for the isolation of lipoproteins from human serum by precipitation. J. Lipid Res., 2: 583, 1970.
- Zilversmith, D. B. and A. K. Davis. Microdetermination of plasma phospholipids by trichloroacetic acid precipitation. J. Lab. Clin. Med., 152: 50, 1957.
- 10. Foster, L. B and R. T. Dunn. Stable reagent for determination of serum triglycerides by a colorimetric Hantzsch Condensation method. Clin. Chem., 19: 338, 1973.
- 11. Carlson, L. A. Ischaemic heart disease in relation to fasting values of plasma cholesterol and triglycerides. Lancet 1: 865, 1972.
- 12. Nikilla, E. A. and A. Aro. Family study of serum lipids and lipoproteins in coronary heart disease. Lancet, 1:954, 1973.
- 13. Miller, G. J. and N. E. Miller. Plasma HDL concentration and development of ischaemic heart disease. Lancet, 1: 16, 1975.
- 14. Ghafoorunissa. Diet and Atherosclerosis. Nutrition News (National Institute of Nutrition, Hyderabad, India), 7 (3): 1, 1986.
- 15. Mandal, B. Advantages of dietary fibre. Science Reporter (CSIR, New Delhi, India), 23 (4): 262, 1986.

Reprint request to: Dr. Govind Sharma, Research Associate, ICMR, Department of Biochemistry, S. N. Medical College, Agra - 282 002.